
COMP1531

8.2 - SDLC Deployment
 



Continuous Integration

Continuous integration: Practice of automating
the integration of code changes from multiple

contributors into a single software project.



Software Deployment

Deployment: Activities relating to making a
software system available for use.

Diagrams sourced from atlassian, gitlab, microsoft



Simple example: CSE

Every CSE student has a public_html
folder that is exposed to the internet.



Historical Deployment

Historically, deployment was a much less frequently occurring
process.

 

Code would be worked on for days at a time without being
tested, and deployed sometimes years at a time. This is largely

due to software historically being a physical asset
 



Something changed

Two major changes have occurred over the last 10 years:
Increased prevalence of web-based apps (no installs)
Improvement to internet connectivity, speed, bandwidth

 

These changes (and more) have allowed for the pushing of updated
software to users to be substantially more possible. Subsequently,

users have come to expect more rapid updates.
 

A movement from software as an asset, to software as a service,
has catalysed this transition

 



Software as a service (Sass)

Service   vs   Asset

A simple case study can be found in Microsoft's movement
of Windows from shipping a product, to shipping a service.

https://docs.microsoft.com/en-us/windows/deployment/update/waas-overview


Cloud services

Numerous cloud services offer the ability
to "easily" deploy your web applications

Amazon Web Services
Google App Engine
Heroku



Modern Deployment

To achieve rapid deployment cycles, modern deployment
isn't as simple as pushing code. Rather, a heavily integrated

and automated approach is preferred.
 



Continuous Delivery

Continuous delivery: Allows accepted code changes to be
deployed to customers quickly and sustainably. This involves the
automation of the release process such that releases can be

done in a "button push".



Continuous Delivery

Many companies will have a daily or weekly "ship"
Often there is some "sign off" process before things
are finally shipped
Since the process is highly controlled, less likely to
make mistakes during testing



CI/CD relationship



CD: Readings

https://www.atlassian.com/continuous-delivery/principles
https://about.gitlab.com/product/continuous-integration/ 

https://www.atlassian.com/continuous-delivery/principles
https://about.gitlab.com/product/continuous-integration/


Flighting

Continuous delivery is concerned with automatically
pushing code out to dev, test, prod.

 

Flighting is a term used predominately in larger
software projects to describe moving builds out to
particular slices of users, beyond the simplicity of

"dev", "test", "prod"



Different deployments

It is common to have 3 core tiers:
dev:

released often, available to developers to see their
changes in deployment

test:
As close to release as possible, ideally identical to prod

prod:
Released to customers, ideally as quickly as possible



Flighting



Continuous Deployment

Continuous Deployment is an extension of Continuous Delivery
whereby changes attempt to flight toward production

automatically, and the only thing stopping them is a failed test



CD: Further Reading

https://www.atlassian.com/continuous-
delivery/principles/continuous-
integration-vs-delivery-vs-deployment

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment


Deploying on your own: AlwaysData
 

For 21T1 COMP1531 has decided to use a free service known as
"alwaysdata" to let students deploy their backend to the cloud.

 

Instructions of how to set this up are found in the project
repository for iteration 3. We will do a brief demo in lectures.



DevOps

A decade ago, the notion of dev ops was quite
simple. It was a role dedicated to gluing in the 3 key

pillars of deploying quality assured software

DevOps is a set of practices intended to reduce the time between committing a
change to a system and the change being placed into normal production, while

ensuring high quality [Wikipedia. Yes, Wikipedia]



DevOps

As development teams become less silo'ed, modern DevOps is
less a role, and more a series of roles or aspect of a role.

Source & Reading: https://hackernoon.com/devops-team-roles-and-
responsibilities-6571cfb56843

https://hackernoon.com/devops-team-roles-and-responsibilities-6571cfb56843


Maintenance & Monitoring

Maintenance: After deployment, the use of analytics and monitoring
tools to ensure that as the platform is used and remains in a healthy

state.
 

Monitoring often has two purposes:
Preserving user experience: Monitoring errors, warnings, and other issues
that affect performance or uptime.
Enhancing user experience: Using analytical tools to monitor users or
understanding their interactions. Often leads to customer interviews
and user stories



Maintenance

Maintenance: After deployment, the use of analytics and monitoring tools
to ensure that as the platform is used and remains in a healthy state.

 

Health is defined by developers, but often consists of:
Monitoring 4XX and 5XX errors
Ensuring disk, memory, cpu, and network is not overloaded

 

Often these aren't actively monitored, but rather monitored with alerts and
triggers


