
COMP1531

3.2 - Python - Pythonic
 



Being Pythonic

Being "Pythonic" means that your code generally follows a set
of idioms agreed upon by the broader python community.

 

"When a veteran Python developer calls portions of code not
“Pythonic”, they usually mean that these lines of code do not
follow the common guidelines and fail to express its intent in

what is considered the most readable way. On some border cases,
no best way has been agreed upon on how to express an intent in

Python code, but these cases are rare."
 

Hitchhiker's guide to python (read more on this)

https://docs.python-guide.org/writing/style/


Examples

Docstrings
Map, reduce, filter, lambdas
Exceptions > Early returns
Destructuring, ignored variables
Enumerate
Multi line strings



Docstrings

Docstrings are an important way to document code and
make clear to other programmers the intent and meaning

behind what you're writing. We are somewhat different
on the formatting, but we want it to include 1)

Description, 2) Parameters, 3) Returns

def string_find(str1, str2):
    """ Returns whether str2 can be found within str1
 
    Parameters:
        str1 (str): The haystack
        str2 (str): The needle
 
    Returns:
        (bool): Whether or not str2 could be found in str1
 
    """

1
2
3
4
5
6
7
8
9

10
11

docstring.py



Map, Reduce, Filter

Map: creates a new list with the results of calling a
provided function on every element in the given list

 

Reduce: executes a reducer function (that you provide)
on each member of the array resulting in a single output
value

 

Filter: creates a new array with all elements that pass the
test implemented by the provided function



Map

Map: creates a new array with the results of
calling a provided function on every element

in the calling array

def shout(string):
    return string.upper() + "!!!!"
 
if __name__ == '__main__':
    tutors = ['Simon', 'Teresa', 'Kaiqi', 'Michelle']
    angry_tutors = list(map(shout, tutors))
    print(angry_tutors)

1
2
3
4
5
6
7

map.py



Reduce

Reduce: executes a reducer function (that
you provide) on each member of the array

resulting in a single output value

from functools import reduce
 
def custom_sum(first, second):
    return first + second
 
if __name__ == '__main__':
    studentMarks = [ 55, 43, 34, 23, 22, 10, 44 ]
    total = reduce(lambda a, b: a + b, studentMarks)
    print(total)

1
2
3
4
5
6
7
8
9

reduce.py



Filter

Filter: creates a new array with all elements
that pass the test implemented by the

provided function

from functools import reduce
 
if __name__ == '__main__':
    marks = [ 65, 72, 81, 40, 56 ]
    passing_marks = list(filter(lambda m: m >= 50, marks))
    total = reduce(lambda a, b: a + b, passing_marks)
    average = total/len(passing_marks)
    print(average)

1
2
3
4
5
6
7
8

filter.py



Combined

from functools import reduce
 
if __name__ == '__main__':
    marks = [ 39, 43.2, 48.6, 24, 33.6 ] # Marks out of 60
    normalised_marks = map(lambda m: 100*m/60, marks)
    passing_marks = list(filter(lambda m: m >= 50, normalised_marks))
    total = reduce(lambda a, b: a + b, passing_marks)
    average = total/len(passing_marks)
    print(average)

1
2
3
4
5
6
7
8
9

allthree.py



Exceptions > Early Returns

You might be quite familiar with early returns:

def sqrt(num):
    if num < 0:
        return None
    return num ** 0.5
    
myNum = int(input())
if sqrt(myNum) is not None:
    print(sqrt(myNum))

1
2
3
4
5
6
7
8

early.py

The problems though are:
Often we can only use "None" or some arbitrary
return (-1) to signify that it didn't work
It's harder to check for a client using it



Exceptions > Early Returns

So we use exceptions. And we can make our own.

class SqrtException(Exception):
    pass
 
def sqrt(num):
    if num < 0:
        raise SqrtException("Number cannot be < 0")
    return num ** 0.5
 
try:
    print(sqrt(int(input())))
except SqrtException as e:
    print(e)

1
2
3
4
5
6
7
8
9
10
11
12

early.py



Destructuring

Being able to make tuples and destructure them is very powerful. If you
don't want all tuples you can use blanks to ignore them.

import math
 
def convert(x, y):
    return (math.sqrt(x**2 + y**2), math.degrees(math.atan2(y,x)))
 
if __name__ == '__main__':
    print("Enter x coord: ", end='')
    x = int(input())
    print("Enter y coord: ", end='')
    y = int(input())
 
    mag, dir = convert(x, y)
    print(mag, dir)
 
    mag2, _ = convert(x, y)
    print(mag2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

destructure.py



Enumerate

Sometimes we want to iterate cleanly over the values
in a list, but also know what index we're up to. In these

situations the enumerate built-in is useful.

tutors = ['Vivian', 'Rob', 'Rudra', 'Michelle']
 
for idx, name in enumerate(tutors):
    print(f"{idx + 1}: {name}")

1
2
3
4

enumerate.py



Multi-line strings

Someones strings need to exist over multiple lines,
there are two good approaches for this

if __name__ == '__main__':
    text1 = """hi
 
    this has lots of space
 
    between chunks"""
 
    text2 = (
        "This is how you can break strings "
        "into multiple lines "
        "without needing to combine them manually"
    )
 
    print(text1)
    print(text2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

multiline.py


