
COMP1531

9.2 - SDLC Development -
Safety & Type Checking

Safety
Protection from
accidental misuse

Security
Protection from
deliberate misuse

Case study: spreadsheets

Around 94% of spreadsheets contain errors*
For any given spreadsheet formula, there's a 1%
chance it contains an error**
Why?

*
**

What We Know About Spreadsheet Errors (2005)
Errors in Operational Spreadsheets (2009)

https://www.researchgate.net/profile/Raymond_Panko/publication/228662532_What_We_Know_About_Spreadsheet_Errors/links/53eb1f7a0cf2fb1b9b6adbef/What-We-Know-About-Spreadsheet-Errors.pdf
http://tuck-fac-cen.dartmouth.edu/images/uploads/faculty/serp/Errors.pdf

Software safety

Things that can go wrong:
C:

Reading from memory that has not been initialised
Dereferencing a null pointer
"Using" memory after it has been freed
Writing outside the bounds of an array
Forgetting to free allocated memory

Python:
Accessing a variable that hasn't been initialised
Accessing a member that an object doesn't have
Passing a function a type of object it doesn't expect

Static
Static properties can be
inferred without
executing the code
E.g. pylint statically
checks that variables are
initialised before they're
used

Dynamic
Dynamic properties are
checked during execution
E.g. python dynamically
checks that an index is inside
the bounds of a list and
throws an exception if it isn't
(unlike an array in C)

Memory safety

Protecting from bugs relating to memory access
Python is memory safe as it prevents access memory
that hasn't been initialised or allocated
The checks are mostly dynamic (at runtime)
In python, safety is prioritised over the negligible
performance cost of bounds-checking

Memory Safety

C is not memory safe
No bounds checking is performed for array accesses
Pointers can still be dereferenced even if they don't point to
allocated memory
C prioritises performance over safety (and security)

Handling runtime errors

Different languages have difference conventions for
handling errors
Python relies on Exceptions for the majority of error
handling. E.g.

will thrown a KeyError exception if "fish" is not in the
dictionary animals.
C does not support exceptions at all, so errors typically have
to be included in the return value.

animals["fish"]1

Easier to Ask for Forgiveness than
Permission

 is the python convention for handling errors.
It encourages you to assume something will work and just have an
exception handler to deal with anything that might go wrong
Pros:

Can simplify the core logic
Multiple different sorts of errors can be handled with one except block

Cons:
Makes code non-structured
Harder to reason what code will be executed.

EAFP

https://docs.python.org/3.4/glossary.html#term-eafp

Look Before You Leap

 is a convention for avoiding errors popular in
languages like C
Unlike EAFP it encourages you to check that something
can be done before you do it
Pros:

Doesn't require exceptions
Code is structured and therefore easier to reason
about

Cons:
Core logic can be obscured by error checks

LBYL

https://docs.python.org/3.4/glossary.html#term-lbyl

Removing errors statically

Rather than dynamically checking for certain
errors, it is always better if errors can be detected
statically
Rules out entire classes of bugs
In Python, pylint can statically detect certain
errors (e.g. unknown identifier)
In C, the compiler detects a number of errors
including type errors.

Type safety

Preventing mismatches between the actual and
expected type of variables, constants and functions
C is type-safe*, as types must be declared and the
compiler will check that the types are correct
Python, on its own, is not type-safe. Everything has a
type, but that type is not known till the program is
executed

* mostly

Type-checking

Languages with a non-optional built-in static type checking
C
Java
Haskell

Languages with optional but still built-in static type checking
Typescript
Objective C

Languages with optional external type checkers
Python
Ruby

Mypy

Mypy is a type checker for python
Python allows you to give variables static types, but without an
external checker they are ignored
Because of python's semantics, type checking it can be complex

Duck typing
Objects with dynamically changing members

Examples

def count(needle, haystack):
 '''
 Returns the number of copies of integer needle in the list of integers haystack.
 '''
 copies = 0
 for value in haystack:
 if needle == value:
 copies += 1
 return copies

def search(needle, haystack):
 '''
 Returns the first index of the integer needle in the list of integers haystack.
 '''
 for i in range(len(haystack)):
 if haystack[i] == needle:
 return i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Further reading

The Mypy website:

How Dropbox uses MyPy
http://mypy-lang.org/

https://blogs.dropbox.com/tech/2019/09/our-
journey-to-type-checking-4-million-lines-of-python/

http://mypy-lang.org/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/

