COMPI153]

4.2 - Web - HTTP & Flask

Computer Networks

Network

The network

This is not a networking course:

« Network: A group of interconnected computers that can
communicate

o Internet: A global infrastructure for networking computers
around the entire world together

« World Wide Web: A system of documents and resources
linked together, accessible via URLs

Network Protocols

« Communication over networks must have a certain
"structure" so everyone can understand

o Different "structures" (protocols) are used for
different types of communication

Network Protocols

Email File
Transfer

Application
Layer

Transport Layer

Internet Layer

Network Access Layer

Source

https://i.ytimg.com/vi/TMVVjOAw7HE/maxresdefault.jpg

Examples?

12 Filezilla

File Edit View Transfer Server Bookmarks Help

lﬁoxxilk &8

Host: I:l Username: I:l Password: I:l Port: I:l Quickconnect

\Documents\Adobe',

Documents
Adobe

Custom Office Templates Write: (no subject) - Thunderbird

Filename

Adobe Med ile fol
dynamiclink... File folder 2/11/2018 3:
Premiere Pro File folder 19/09/2018

Hayden S5mith <z3413003@ad.unsw.edu.au> @ PuTTY Configuration

Category:
=} Session Options controlling session logging

Teminal Session logging:
Keyboard @ None Printable output

- Bell All session output SSH packets
Subject: Features SSH packets and raw data

|2 directories i g
| - - Window Log file name:
Server/Local file Direc.. Remote file Para grap o ow Variable Width Appearance
Behaviour _
Tranatsiion {__Log file name can contain &Y, &M, &D for date, &T for
" time., and &H for host name)
Queued files | Failed transfers | Successful transfers Selection What to do if the Iog file already exists:
Colours - '
Con ct'u . Always overwrite it
- = ['_71 " Always append to the end of it
ata
. . 9 Ask the user every time
Hayden Smith (Linkedin) Proxy 7] Flush log fl frequently
Telnet

Rlogin Options specific to SSH packet logging
Lecturer-in-charge COMP1531 SSH 7] Omit known password fields

. - - . ' Serial Omit session data
SE:hCchl le Computer Science and Engineering

putty log | Browse... |

Cancel

HTTP

HTTP: Hypertext Transfer Protocol

|.LE. Protocol for sending and receiving HTML
documents (nowadays much more)

Request

!

P
% chrome

Response

Web browsers are applications
to request and receive HTTP

= =

R O O 00 o Ul & W N -

HTTP Request & Response

HTTP Request

GET /hello HTTP/1.1

Host: 127.0.0.1:5000

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.90 Safari/537.36
Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,image/webp,image/apng,*/*;g=0.8,application/signed-exchange;v=b3
Sec-Fetch-Site: none

Accept-Encoding: gzip, deflate, br

Accept-Language: en-GB,en-US;g=0.9,en;g=0.8

HTTP Response

HTTP/1.0 200 OK

Content-Type: text/html; charset=utf-8
Content-Length: 12

Server: Werkzeug/0.16.0 Python/3.5.3
Date: Wed, 09 Oct 2019 13:21:51 GMT

<N o O b W DN -

Hello world!

Flask

Lightweight HTTP web server built in python

flask1.py

from flask import Flask
APP = Flask(_name)

@APP.route("/")
def hello():
return "Hello World!"

if name

== " main_ ":
APP.run()

O 0O J O U1l & W DN -

1 $ python3 flaskl.py

Server an image

Time to serve an image via a flask server...

flask2.py

1 from flask import Flask, send file

2 APP = Flask(__name)

3

4 QAPP.route("/img")

5 def img():

6 return send file('./cat.jpg', mimetype='image/jpg')
7

8 if name == " main_ ":

9 APP.run()

1 $ python3 flask2.py

Flask Reloading

Lightweight HTTP web server built in python

flask1.py

from flask import Flask
APP = Flask(__name)

@QAPP.route("/")
def hello():
return "Hello World!"

if name

== " main ":
APP.run()

O 00 J o Ul & WIDN -

export FLASK APP=flaskl.py
export FLASK DEBUG=1
export FLASK RUN PORT=0
python3 -m flask run

B W N -
w v wn

Learn More

Some tutorials include:

. https://pythonspot.com/flask-web-app-with-python/

. https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-
oython-and-flask

When it comes to online tutorials, note that:

« Each "tutorial" may be using different python versions
« Each "tutorial" may have different aims in mind

https://pythonspot.com/flask-web-app-with-python/
https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask

API

An APl (Application Programming Interface) refers to an
interface exposed by a particular piece of software.

The most common usage of "API" is for Web APIs, which refer to
a "contract" that a particular service provides. The interface of

the service actsas ab
endpoints, and given

ack box anc
particular in

indicates that for particular

out, the client can expect to

receive particular output.

Web API

Load Webpage (standard request)

S ———— L

—
Page loaded

Get extra data

SVl —
 ———

Receive extra data

(Client)

Submit form data

—
e —

Form submission confirmed

Restful API & "CRUD"

A RESTful APl is an application program interface (AP/) that uses
HTTP requests to GET, PUT, POST and DELETE data. These 4
methods describe the "nature" of different API requests.

GET, PUT, POST, DELETE are HTTP Methods

Method Operation

POST Create
GET Read
PUT Update

DELETE Delete

Input & Output

Different CRUD properties require different
approaches for input. All output are the same.

crud.py

from flask import Flask, request
from json import dumps

Inputs are either: APP = Flask(_ name_)
@APP.route("/one", methods=["'GET'])
def one():
return dumps ({
'l': request.args.get('datal'),
'2': request.args.get('datal'),

» GET: via URL and "request.args"

« PUT|POST |DELETE: via post-data
anda via "request.get_json()"

o All outputs should be packaged up as
JSON

« (JSON discussed later)

00 o O s W IDN K

O

= =
— O

})

= =
w N

@APP.route("/two", methods=['POST'])
def two():
data = request.get json()
return dumps ({
'l1': data['datal'],
'2': data['data2'],

e e e e
Vel JERN e NS, TN

})

N DN
_ O

if name == ' main
APP.run()

N
N

Using CRUD and state

Task:

Create a web server that uses CRUD to allow you to
create, update, read, and delete a point via HTTP
requests

Use a global variable to manage the state.

point.py

Talking to Flask

How can we talk to flask?

1. API client
2. Web Browser
3. URLLib via python

API Client (ARC/Postman/Insomnia)

How to download/install postman:

« Open google chrome

« Google "ARC client"

o Install the addon and open it
 Follow the demo in the lectures

You may need to use a tool like this in the final
exam.

API Client (AR C)

= ARC

HTTP request
Socket

History

Send a request and recall it from here

Once you made a request it will appear in this place.

Saved

Save a request and recall it from here

Use ctri+s to save a request. It will appear in this
place.

Install new ARC with new features!

Request

Method
GET Request URL
An URL is required.

Parameters =

Headers

I_D <> To

Header name

Variahles

Selected environment: Default

LT

Web Browser

@ 127.0.0.1:5000/hella x +
« C @ 127.0.0.1:5000/hello W
Hello World! x E Elements Cons Sources Networ Performance WMemory Application

® © ¥ Q isable cache | Online ¢ 3

J5 C55 Img Media Font Doc WS Manifest Other

T g [" e ST]
i - =

- LT

e

Mame * Headers lesponse Timing

[ETE - -

Request URL: http://127.8.8.1:56808/hello
Request Method: GET

Status Code: @ 208 0K

Remote Address: 127.8.8.1:5800

Referrer Policy: no-referrer-when-downgrade

¥ Response Headers
Content-Length: 12
Content-Type: text/html; charsets=
Date: Wed, @9 Oct 2819 13:26:85 GMT

Server: Werkzeug/@.16.8 Python/3.5.3

* Request Headers VIEW SOUTCE
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,1im
mage/apng,*/*;q=0.8,application/signed-exchange;v=b3
Accept-Encoding: gzip, deflate, br
Accept-Language: en-GB,en-US;q=08.9,en;g=0.8

1 requests | 166 B transferre Cache-Control: max-age=0

requests - Python

requests is a python3 library that allows
you to programmatically make HTTP
requests to a web server.

You will use this extensively in iteration
2.

[

O VW 00 O Ol WDN

requests - Python

echo.py

1 from flask import Flask, request

2 from json import dumps

3

4 APP = Flask(__name)

5

6 @APP.route("/echo", methods=['GET'])
7 def echo():

8 return dumps({'data’': request.args.get('data')})
9

10 if name == ' main_ "':

11 APP.run()

echo_main.py

import json
import requests

def get payload():
response = requests.get('http://127.0.0.1:5000/echo', params={'data':
payload = response.json()
print (payload)

if name == ' main_ ':
get payload()

We expect you to do your own research for POST

'hi'})

Web server as a wrapper

Because you've written so many integration tests
for iteration 1, it makes sense to:

1. Implement all of the functions from iteration one
2. Then wrap them in a flask server

Web server as a wrapper

iter2example/search.py

def search(token, query str):
return {
'messages’' : [

'Hello ' + token + ' ' + query str,
Not the right structure

<N O O W W DN -

iter2example/server.py

1 from json import dumps

2 from flask import Flask, request

3

4 from search import search fn

5

6 APP = Flask(__name)

7

8 @APP.route('/search', methods=['GET'])
9 def search flask():

10 return dumps(search(requests.args.get('token'), request.args.get('query str')))
11

12 if name == ' main_':

13 APP.run()

(Bonus) interesting
question

How do companies track whether or
not you've read an email they've sent
you?

