
COMP1531

5.3 - SDLC Design - Software
Engineering Principles

Design Smells

Rigidity: Tendency to be too difficult to change
Fragility: Tendency for software to break when single change is made
Immobility: Previous work is hard to reuse or move
Viscosity: Changes feel very slow to implement
Opacity: Difficult to understand
Needless complexity: Things done more complex than they should be
Needless repetition: Lack of unified structures
Coupling: Interdependence between components

Design Principles

Purpose is to make items:
Extensible
Reusable
Maintainable
Understandable
Testable

Often, this is achieved through abstraction. Abstraction is the
process of removing characteristics of something to reduce it some

a more high level concept

DRY

"Don't repeat yourself" (DRY) is about reducing
repetition in code. The same code/configuration
should ideally not be written in multiple places.

Defined as:
"Every piece of knowledge must have a single,

unambiguous, authoritative representation within a
system"

DRY

How can we clean this up?
import sys

if len(sys.argv) != 2:
 sys.exit(1)

num = int(sys.argv[1])

if num == 2:
 for i in range(10, 20):
 result = i ** 2
 print(f"{i} ** 2 = {result}")

elif num == 3:
 for i in range(10, 20):
 result = i ** 3
 print(f"{i} ** 3 = {result}")

else:
 sys.exit(1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

DRY

How can we improve this?

import jwt

encoded_jwt = jwt.encode({'some': 'payload'}, 'applepineappleorange', algorithm='HS256')
print(jwt.decode(encoded_jwt, 'applepineappleorange', algorithms=['HS256']))

1
2
3
4

KISS

"Keep it Simple, Stupid" (KISS) principles state that a
software system works best when things are kept

simple. It is the believe that complexity and errors are
correlated.

Your aim should often be to use the simplest tools to
solve a problem in the simplest way.

KISS

Example 1: Write a python function to
generate a random string with up to

50 characters that consist of lowercase
and uppercase characters

KISS

Example 2: Write a function that
prints what day of the week it is today

https://stackoverflow.com/questions/9847213/how-do-i-get-the-day-of-week-given-a-date-in-python

https://stackoverflow.com/questions/9847213/how-do-i-get-the-day-of-week-given-a-date-in-python

KISS

Example 3: Handling command line
arguments

python3 commit.py -m "Message"
python3 commit.py -am "All messages"

1
2

Encapsulation

Encapsulation: Maintaining type abstraction by
restricting direct access to internal representation of

types (types include classes)

Example:
Consider this code:

What if we wanted to store points in polar coordinates?

class Point:
 def __init__(self, x,y):
 self.x = x
 self.y = y

def distance(start, end):
 return sqrt((end.x - start.x)**2 + (end.y - start.y)**2)

1
2
3
4
5
6
7

Encapsulation

Encapsulation

Example:
Consider this code:

Can we prevent stealing spots in the queue?

class Queue:
 def __init__(self):
 self.entries = []

 def enqueue(self, entry):
 self.entries.append(entry)

 def dequeue(self):
 return self.entries.pop(0)

1
2
3
4
5
6
7
8
9

Top-down thinking

Similar to "You aren't gonna need it" (YAGNI)
that says a programmer should not add

functionality until it is needed.

Top-down thinking says that when building
capabilities, we should work from high levels of
abstraction down to lower levels of abstraction.

Top-down thinking

Question 1: Given two Latitude/Longitude
coordinates, find out what time I would arrive at

my destination if I left now. Assume I travel at the
local country's highway speed

Why is well designed software
important?

When you only do this loop once, writing bad code has
minimal impacts
When we complete this "cycle" many times, modifying
bad code comes at a high cost

Why is well designed software
important?

"Poor software quality costs more than $500
billion per year worldwide" – Casper Jones

Systems Sciences Institute at IBM found that it
costs to fix a

software bug after release, rather than during
the design process

four- to five-times as much

http://blog.celerity.com/the-true-cost-of-a-software-bug

Why do we write bad code?

Often, our default tendency is to write bad code. Why?
It's quicker not to think too much about things

Good code requires thinking not just about now, but also
the future

Pressure from business we're looking for
Refactoring takes time

Bad code: Easy short term, hard long term
Good code: Hard short term, easy long term

Why do we want to write good code?

More consistent with Agile Manifesto
"Welcome changing requirements"

Adapt easier to the natural SD life cycle

Refactoring

Restructuring existing code without changing its
external behaviour.

Typically this is to fix code or design smells and thus
make code more maintainable

Finding a balance

Don't over-optimise to remove design smells
Don't apply principles when there are no design
smells - unconditional conforming to a principle is a
bad idea, and can sometimes add complexity back in

