
COMP1531

1.2 - SDLC - Intro
 



Software Engineering

What's the difference between Computer
Science and Software Engineering?



Software Engineering

What's the difference between Computer Science and
Software Engineering?

At UNSW, Software Engineering is an extension of
Computer Science, where we give extra focus to how
software systems are built, how to manage projects,
and how to test software to provide quality assurance.

Do you need to be a Software Engineering student to
be employed as a Software Engineer?



Software Engineering

COMP1511: Learning programming by writing
code to solve problems
COMP1531: Learning Software Engineering by
using programming in the context of the
software development lifecycle (SDLC)



Software Engineering

Applying engineering methodologies to our current
programming capabilities.

 

IEEE definition: "The application of a systematic, disciplined,
quantifiable approach to the development, operation, and

maintenance of software, and the study of these approaches;
that is, the application of engineering to software."

 

We're going to build thought-out, testable, scalable software that
is meets set out requirements and is easily maintained



That was "What" - but "Why"?

What happens in a world without
good software engineering

principles being used?



That was "What" - but "Why"?

Software engineering fundamentally exists to allow businesses
and organisations to de-risk their business goals compared to

just hacking away.
More predictability about time and budget
Minimise errors and increase reliability

 

Software engineering adds small overheads through the
software development process to provide higher assurances

overall.
 

Bad things can happen

https://raygun.com/blog/costly-software-errors-history/


That was "What" - but "Why"?



Software Development Life
Cycle (SDLC)



SDLC

1. Requirements Analysis

Analyse and understand problem domain
Determine functional and non-functional components
Generate userstories / use cases



2. Design

Producing software architecture/blue-prints
System diagrams and schematics
Modelling of data flows

SDLC



3.Development

Choose a programming language
and write the code

4. Testing
Use unit or behaviour tests to test
your software
Automating testing for every code
change

SDLC



5. Deployment

Make the software available for use
by the users

6. Maintenance
Monitor the system, track issues,
interview users to find more
requirements

SDLC



Modern philosophy of blending the development
and operations teams
Historically was just a merger of "System IT" and
"Developers"

DevOps


