COMPI153]

1.5 - SDLC Testing - Intro

In this lecture

e Basics of pytest (to test code)
e Understanding importing and paths

C-Style Testing

How did you test in COMP1511?

0O o Ul LW DN B

L e
w N~k O W

ctest.c

double sum(double a, double b) {
return a + b;

}

int main() {

assert(sum(l, 2) == 3);
assert(sum(2, 2) == 4);
assert(sum(3, 2) == 5);
printf("All tests passed\n");

N

1
2

C-Style Testing

Let's first look at python functions

double sum(double a, double Db)
return a + b;

}

def sum(a, b):
return a + b

Q. What are the key differences?

{

w N =

N

C-Style Testing

Let's first look at python functions

double sum(double a, double b) {
return a + b;

}

def sum(a, b):
return a + b

Q. What are the key differences?

e No semi-colons

e No braces

* No typing

e "def" to say define function

C-Style Testing

Q. How would we test this python function?

1 def sum(a, b):
2 return a + b

C-Style Testing

Q. How would we test this python function?

cstyletest.c

def sum(a, b):
return a + b

= W N R

assert sum(l,) ==

:~fteaching/cs1531/19T3-lectures/weekl$ pyvthon3 cstyletest.py
Traceback (most recent call last):
File "cstyletest.py”, line 4, in <module>
assert sum(1, 2) ==
AssertionError

C-Style Testing

Let's clean this up and wrap it in a function,
though!

def sum(a, b):
return a + b

def testSmallNumbers():
assert sum(.,) ==

~N O O = WO DD

testSmallNumbers ()

Basic Python testing

Let's take a look at pytest

What is pytest?

e pytestis a library that helps us write small tests,
but can also be used to write larger and more
complex tests

e pytest comes with a binary that we run on
command line

e pytest detects any function prefixed with test and
runs that function, processing the assertions inside

https://docs.pytest.org/en/latest/

~NN O O W DN

pytest - basic

test1_nopytest.py

def sum(x, y):
return x * vy

def test suml():
assert sum(l, 2) ==

test suml ()

S python3 testl nopytest.py

~N O O W W IDN -

test1_pytest.py

import pytest

def sum(x, y):
return x * y

def test suml():
assert sum(l, 2) =

S pytest testl pytest.py

pytest - more complicated

0O o O WD -

e e e
0O U WNRE OV

A more comp
test mult

import pytest

def sum(x, y):
return x + y

icated test

iple.py

def test small():
assert sum(1l, 2) == 3, "1, 2 ==
assert sum(3, 5) == 8, "3, 5 ==
assert sum(4, 9) == , 4, 9 ==

def test small negative():
assert sum(-1, == , =1,
assert sum(-3,) == , =3,
assert sum(-4,) == , =4,

def test large():
assert sum(384*52, e

)
assert sum(23*98, *63)

, 84*52,
, 23*98,

99*76
68*63

pytest - prefixes

If you just run

$ pytest

Without any files, it will automatically look for
any files in that directory in shape:

e test_*.py
e * test.py

pytest - particular files

You can run specific functions without your test files
with the -k command. For example, we if want to run
the following:

e test small
e test_small_negative

o testtarge
We could run

$ pytest -k small
or try
$ pytest -k small -v

0O J o O d WDN K

e e S S S e S e R e e e
O 00 J O UL WN K OV

pytest - markers

We can also use a range of decorators to specify
tests in python:

import pytest

def pointchange(point, change):

X, y = point
X += change
y += change
return (x, Y)

@pytest.fixture
def supply point():
return (1, 2)

@pytest.mark.up
def test 1(supply point):

assert pointchange(supply point,

@pytest.mark.up
def test 2(supply point):

assert pointchange(supply point,

0O 4O Ul & Wi K-

e e e
U WN R oW

@pytest.mark.up
def test 3(supply point):

assert pointchange(supply point,)

@pytest.mark.down
def test 4 (supply point):

assert pointchange(supply point,)

@pytest.mark.skip
def test 5(supply point):
assert ==

@pytest.mark.xfail
def test 6(supply point):
assert ==

4

4

"This test is skipped”

"This test's output is muted”

pytest - more

There are a number of tutorials online for pytest.
This is a very straightforward one.

https://www.guru99.com/pytest-tutorial.html

