
COMP1531

9.1 - SDLC Design - Software
Complexity

How complicated is
software?

No Silver Bullet

A famous paper from 1986:
No Silver Bullet – Essence and Accident in Software
Engineering by Fred Brooks

Described software complexity by dividing it into two
categories essential and accidental.
Further conclusions of the paper are much debated

Essential
Complexity that is inherent
to the problem.

For example, if the user or
client requires the program
to do 30 different things,
then those 30 things are
essential

Accidental
Complexity that is not
inherent to the problem.

For example, generating
or parsing data in
specific formats.

Essential
Fundamentally can't be
removed, but can be
managed with good software
design.

Accidental
Can be somewhat
mitigated by engineering
decisions; e.g. smart use
of libraries, standards,
etc.

Hard to remove entirely.

Open questions

Is there a concrete process for distinguishing
accidental and essential complexity?
How much of the complexity of modern software
is accidental?
To what degree has or will accidental complexity
be removed in future?

Further reading

The original No Silver Bullet paper:

A more modern description:

A recent rebuttal:

http://faculty.salisbury.edu/~xswang/Research/Papers
/SERelated/no-silver-bullet.pdf

https://stevemcconnell.com/articles/software-
engineering-principles/

https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/

http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no-silver-bullet.pdf
https://stevemcconnell.com/articles/software-engineering-principles/
https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/

Can we measure
complexity?

Coupling

A measure of how closely connected different
software components are
Usually expressed as a simple ordinal measure of
"loose" or "tight"
For example, web applications tend to have a
frontend that is loosely coupled from the backend

Cohesion

The degree to which elements of a module belong together
Elements belong together if they're somehow related
Usually expressed as a simple ordinal measure of "low" or
"high"

Cyclomatic complexity

A measure of the branching complexity of
functions
Computed by counting the number of linearly-
independent paths through a function

Cyclomatic complexity

To compute:
1. Convert function into a control flow graph
2. Calculate the value of the formula

where e is the number of edges and n is
the number of nodes

V (G) = e− n+ 2

Example 1

def foo():
 if A():
 B()
 else:
 C()
 D()

1
2
3
4
5
6

A

B C

D

V (G) = 4 − 4 + 2 = 2

Example 2

def foo():
 if A():
 B()
 else:
 if C():
 D()
 E()

1
2
3
4
5
6
7

A

B C

E

V (G) = 6 − 5 + 2 = 3

D

Example 3

def foo():
 while A():
 B()
 C()

1
2
3
4

A

B C

V (G) = 3 − 3 + 2 = 2

Example 4

def day_to_year(days):
 year = 1970

 while days > 365:
 if is_leap_year(year):
 if days > 366:
 days -= 366
 year += 1
 else:
 days -= 365
 year += 1

 return year

1
2
3
4
5
6
7
8
9
10
11
12
13

V (G) = 8 − 6 + 2 = 4

Example 5

def day_to_year(days):
 year = 1970

 while days > 0:
 if is_leap_year(year):
 days -= 366
 else:
 days -= 365
 year += 1

 return year - 1

1
2
3
4
5
6
7
8
9
10
11

V (G) = 7 − 6 + 2 = 3

Usage

A simple understandable measure of
function complexity
Some people argue 10 should be the
maximum cyclomatic complexity of a
function where others argue for 8

Drawbacks

Assumes non-branching statements have
no complexity
Keeping cyclomatic complexity low
encourages splitting functions up,
regardless of whether that really makes the
code more understandable

Automatic calculation

NOTE: May get different results compared to doing it by
hand as the extension generates a more complex CFG

http://pylint.pycqa.org/en/latest/technical_reference/ex
tensions.html#design-checker

http://pylint.pycqa.org/en/latest/technical_reference/extensions.html#design-checker

