
COMP1531

10.1 - Week 10 General

Iterators & Generators

Evan Kohilas gave a more extensive talk on this
topic during a CSESoc supported event a couple of
weeks ago - but we will cover them lightly today

Iterators

In Python, iterators are objects containing a countable number
of elements
For example, we can get an iterator for a list:

animals = ["dog", "cat", "chicken", "sheep"]

animal_iterator = iter(animals)

1
2
3

Iterators

Any object with the methods __iter__() and __next__() is an iterator
Simple example (squares)

class Squares:
 def __init__(self):
 self.i = 0

 def __iter__(self):
 return self

 def __next__(self):
 self.i += 1
 return self.i*self.i

1
2
3
4
5
6
7
8
9
10

For loops

Python for loops use iterators behind the scenes
This is valid code:

squares = Squares()

for i in squares: # Loops forever
 print(i)

1
2
3
4

Iterator vs Iterable

Intuitively:
An iterator stores the state of the iteration (i.e. where it's
up to).
Something is iterable if it can be iterated over.

Concretely:
An iterator has __iter__() and __next()__ methods.
Iterables have __iter__() methods

Thus, all iterators are iterable, but not all iterables are
iterators
For example, lists are iterable, but they are not iterators
For loops only need to be given something iterable

Generators

A different way of writing iterators
Defined via generator functions instead of classes
Example generator

def simple_generator():
 print("Hello")
 yield 1
 print("Nice to meet you")
 yield 2
 print("I am a generator")

1
2
3
4
5
6

Generators

Intuitively, you can think of a generator as a
suspendable computation
Calling next() on a generator executes it until it
reaches a yield, at which point it is suspended
(frozen) until the subsequent call to next()

Generators

More useful examples

def squares():
 i = 0
 while True:
 i += 1
 yield i*i

1
2
3
4
5

def fib():
 a = 1
 b = 1
 while T

1
2
3
4

Libraries
Most code re-use is through libraries.
Software engineering can be an exercise in composing
libraries to do what we want.
This is necessary for building useful software.
What's the downside?

Case study: leftpad

A Javascript library that had many users,
mostly indirect
Owing to a disagreement, the author
removed the library from NPM
This caused thousands of Javascript-based
applications and libraries to break

The entire library

module.exports = leftpad;
function leftpad (str, len, ch) {
 str = String(str);
 var i = -1;
 if (!ch && ch !== 0) ch = ' ';
 len = len - str.length;
 while (++i < len) {
 str = ch + str;
 }
 return str;
}

1
2
3
4
5
6
7
8
9
10
11

Further reading

An analysis of the leftpad incident

Dependency Hell

An attempt fix to dependency hell

https://www.davidhaney.io/npm-left-pad-have-we-forgotten-
how-to-program/

https://en.wikipedia.org/wiki/Dependency_hell

https://nixos.org/nix/

https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://en.wikipedia.org/wiki/Dependency_hell
https://nixos.org/nix/

