COMPI153]

10.1 - Week 10 General



lterators & Generators

« Evan Kohilas gave a more extensive talk on this
topic during a CSESoc supported event a couple of
weeks ago - but we will cover them lightly today



Iterators

 In Python, iterators are objects containing a countable number
of elements
« For example, we can get an iterator for a list:

1 animals = ["dog", "cat", "chicken", "sheep'"]
2

3 animal iterator

lter(animals)



Iterators

« Any object with the methods __iter_ () and __next_ () is an iterator
« Simple example (squares)

1 class Squares:

2 def 1init (self):

3 self.1 =

4

5 def iter (self):

6 return self

7

8 def next (self):

9 self.1 +=
10 return self.i*self.1



For loops

 Python for loops use iterators behind the scenes
o This is valid code:

1 squares = Squares()
2

3 for 1 1n squares:

4 print (1)



lterator vs Iterable

o Intuitively:
= An iterator stores the state of the iteration (i.e. where it's
up to).
= Something is iterable if it can be iterated over.
» Concretely:

« An iterator has __iter_ () and __next() _ methods.
» [terables have iter () methods

« Thus, all iterators are iterable, but not all iterables are
iterators

« For example, lists are iterable, but they are not iterators

 For loops only need to be given something iterable



Generators

» A different way of writing iterators
» Defined via generator functions instead of classes

« Example generator

1 def simple generator():

2 print("Hello")

3 yield

4 print("Nice to meet you")
5 yield

6

print ("I am a generator")



Generators

o Intuitively, you can think of a generator as a
suspendable computation

o Calling next() on a generator executes it until it
reaches a yield, at which point it is suspended
(frozen) until the subsequent call to next()



o= WD B

Generators

« More useful examples

def squares(): 1 def fib()
1 = 2 a =
while : 3 b =

i += 4 while

vield i*i



Libraries

Most code re-use is through libraries.

Software engineering can be an exercise in composing
libraries to do what we want.

This is necessary for building useful software.

What's the downside?



Case study: leftpad

o A Javascript library that had many users,
mostly indirect

« Owing to a disagreement, the author
removed the library from NPM

» This caused thousands of Javascript-based

applications and libraries to break




The entire library

1 module.exports = leftpad;
2 function leftpad (str, len, ch) {

3

O 00 J O U1 Wb

11 }

str = String(str);
var 1 = c
if (!ch && ch !== 0) ch =" ";
len = len - str.length;
while (++i < len) {
str = ch + str;

}

return str;



Further reading

« An analysis of the leftpad incident

= https://www.davidhaney.io/npm-left-pad-have-we-forgotten-
how-to-program/

« Dependency Hell

= https://en.wikipedia.org/wiki/Dependency_hell
« An attempt fix to dependency hell

= https://nixos.org/nix/


https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://en.wikipedia.org/wiki/Dependency_hell
https://nixos.org/nix/

