
COMP1531

Teamwork Tuesday!

Where we talk about real and
practical stories & learning
relating to teamwork and

leadership

Events Lessons

Robocup 2016
Bad git commands leading to failing robots

Sunswift 2014
Breaking a world land speed record

Sunswift 2015
Being 30 seconds away from being

disqualified in the world solar challenge

Sunswift 2017
What teamwork looks like on a solar car race

Sunswift 2018
Losing braking and steering on the same day

Relationships
Personal relationships under pinning group

dynamics

Resolving Disagreements
How most disagreements are fundamentally

just about contextual asynchronicity

Discipline
In leadership positions, how to discipline and

manage groups of people

In this lecture

Basics of pytest (to test code)
Understanding importing and paths

C-Style Testing

How did you test in COMP1511?

#include <stdio.h>
#include <assert.h>

double sum(double a, double b) {
 return a + b;
}

int main() {
 assert(sum(1, 2) == 3);
 assert(sum(2, 2) == 4);
 assert(sum(3, 2) == 5);
 printf("All tests passed\n");
}

1
2
3
4
5
6
7
8
9
10
11
12
13

ctest.c

Let's first look at python functions

double sum(double a, double b) {
 return a + b;
}

1
2
3

def sum(a, b):
 return a + b

1
2

Q. What are the key differences?

C-Style Testing

Let's first look at python functions

double sum(double a, double b) {
 return a + b;
}

1
2
3

def sum(a, b):
 return a + b

1
2

Q. What are the key differences?

No semi-colons
No braces
No typing
"def" to say define function

C-Style Testing

Q. How would we test this python function?

def sum(a, b):
 return a + b

1
2

C-Style Testing

Q. How would we test this python function?

def sum(a, b):
 return a + b

assert sum(1, 4) == 3

1
2
3
4

cstyletest.c

C-Style Testing

Let's clean this up and wrap it in a function,
though!

def sum(a, b):
 return a + b

def testSmallNumbers():
 assert sum(1, 4) == 3

testSmallNumbers()

1
2
3
4
5
6
7

C-Style Testing

Basic Python testing

Let's take a look at

What is pytest?

pytest is a library that helps us write small tests,
but can also be used to write larger and more
complex tests
pytest comes with a binary that we run on
command line
pytest detects any function prefixed with test and
runs that function, processing the assertions inside

pytest

https://docs.pytest.org/en/latest/

pytest - basic

def sum(x, y):
 return x * y

def test_sum1():
 assert sum(1, 2) == 3

test_sum1()

1
2
3
4
5
6
7

$ python3 test1_nopytest.py1

test1_nopytest.py
import pytest

def sum(x, y):
 return x * y

def test_sum1():
 assert sum(1, 2) == 3, "1 + 2 == 3"

1
2
3
4
5
6
7

$ pytest test1_pytest.py1

test1_pytest.py

pytest - more complicated

import pytest

def sum(x, y):
 return x + y

def test_small():
 assert sum(1, 2) == 3, "1, 2 == "
 assert sum(3, 5) == 8, "3, 5 == "
 assert sum(4, 9) == 13, "4, 9 == "

def test_small_negative():
 assert sum(-1, -2) == -3, "-1, -2 == "
 assert sum(-3, -5) == -8, "-3, -5 == "
 assert sum(-4, -9) == -13, "-4, -9 == "

def test_large():
 assert sum(84*52, 99*76) == 84*52 + 99*76, "84*52, 99*76 == "
 assert sum(23*98, 68*63) == 23*98 + 68*63, "23*98, 68*63 == "

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A more complicated test
test_multiple.py

pytest - prefixes

If you just run

$ pytest

Without any files, it will automatically look for
any files in that directory in shape:

test_*.py
*_test.py

pytest - particular files

You can run specific functions without your test files
with the -k command. For example, we if want to run

the following:

test_small
test_small_negative
test_large

We could run

$ pytest -k small

or try
$ pytest -k small -v

pytest - markers

We can also use a range of decorators to specify
tests in python:

import pytest

def pointchange(point, change):
 x, y = point
 x += change
 y += change
 return (x, y)

@pytest.fixture
def supply_point():
 return (1, 2)

@pytest.mark.up
def test_1(supply_point):
 assert pointchange(supply_point, 1) == (2, 3)

@pytest.mark.up
def test_2(supply_point):
 assert pointchange(supply_point, 5) == (6, 7)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

@pytest.mark.up
def test_3(supply_point):
 assert pointchange(supply_point, 100) == (101, 102)

@pytest.mark.down
def test_4(supply_point):
 assert pointchange(supply_point, -5) == (-4, -3)

@pytest.mark.skip
def test_5(supply_point):
 assert False == True, "This test is skipped"

@pytest.mark.xfail
def test_6(supply_point):
 assert False == True, "This test's output is muted"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

pytest - more

There are a number of tutorials online for pytest.
.This is a very straightforward one

https://www.guru99.com/pytest-tutorial.html

